Multiple imputation to deal with missing objectively-measured physical activity data: findings from two cohorts

Autores

  • Rafaela Costa Martins Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. https://orcid.org/0000-0003-3538-7228
  • Bruna Gonçalves C. da Silva Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. https://orcid.org/0000-0003-2917-7320
  • Cauane Blumenberg Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. https://orcid.org/0000-0002-4580-3849
  • Luiza Isnardi Ricardo Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. https://orcid.org/0000-0002-1244-4501
  • Shana Ginar da Silva Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. Federal University of South Frontier, Faculty of Medicine, Passo Fundo, Rio Grande do Sul, Brazil. https://orcid.org/0000-0003-1504-6936
  • João Pedro Ribeiro Federal University of Pelotas, Faculty of Physical Education, Pelotas, Rio Grande do Sul, Brazil.
  • Alicia Matijasevich Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. São Paulo University, Faculty of Medicine, Department of Preventive Medicine, São Paulo, São Paulo, Brazil. https://orcid.org/0000-0003-0060-1589
  • Ana Maria Baptista Menezes Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil.
  • Helen Gonçalves Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil.
  • Fernando César Wehrmeister Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. https://orcid.org/0000-0001-7137-1747
  • Iná dos Santos Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. https://orcid.org/0000-0003-1258-9249
  • Inácio Crochemore-Silva Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. Federal University of Pelotas, Post-graduate Program in Physical Education, Pelotas, Rio Grande do Sul, Brazil. https://orcid.org/0000-0001-5390-8360
  • Aluísio JD Barros Federal University of Pelotas, Post-graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil.

DOI:

https://doi.org/10.12820/rbafs.26e0209

Palavras-chave:

Accelerometry, Physical activity, Statistics

Resumo

O objetivo desse artigo foi descrever os padrões de perda de informação em dados de acelerometria, além de avaliar o processo de imputação múltipla para estimar o nível de atividade física para indivíduos sem dados de acelerometria. Participantes de duas coortes de nascimentos de Pelotas (Brasil) com 22 e 11 anos participaram do estudo e diferenças entre casos completos e imputados foram avaliadas. A média geral de atividade física para os casos completos (n1993 = 2.985 e n2004 = 3.348) e para casos completos mais imputados (n1993 = 760 e n2004 = 79) foi descrita de acordo com os preditores. Indivíduos do sexo masculino, de cor da pele preta e com menor escolaridade apresentaram maiores médias de atividade física geral. Quase todas as estimativas imputadas foram comparáveis com os valores de casos completos, e a maior diferença encontrada foi 0,7 mg para o primeiro quintil de renda na coorte de 1993. Imputação múltipla é uma boa técnica para lidar com dados faltantes de atividade física medida por acelerometria. Essa técnica fornece um gama relevante de variáveis para serem usadas a fim de predizer valores de acelerometria eficientemente.

Downloads

Não há dados estatísticos.

Referências

Chen KY, Bassett DR. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37(11 Suppl):S490-500.

Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med. 2014 Jul;48(13):1019–23.

Ainsworth B, Cahalin L, Buman M, Ross R. The Current State of Physical Activity Assessment Tools. Prog Cardiovasc Dis. 2015;57(4):387–95.

Rowlands AV. Accelerometer assessment of physical activity in children: an update. Pediatr Exerc Sci. 2007;19(3):252–66.

Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc. 2005;37(11 Suppl):S582-588.

Yue Xu S, Nelson S, Kerr J, Godbole S, Patterson R, Merchant G, et al. Statistical approaches to account for missing values in accelerometer data: Applications to modeling physical activity. Stat Methods Med Res. 2018;27(4):1168–86.

Belton S, O’Brien W, Wickel EE, Issartel J. Patterns of noncompliance in adolescent field-based accelerometer research. J Phys Act Health. 2013;10(8):1181–5.

Fairclough SJ, Noonan R, Rowlands AV, Van Hees V, Knowles Z, Boddy LM. Wear Compliance and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers: Med Sci Sports Exerc. 2016;48(2):245–53.

Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(11 Suppl):S531-543.

Tudor-Locke C, Barreira TV, Schuna Jr JM, Mire EF, Chaput J-P, Fogelholm M, et al. Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Int J Behav Nutr Phys Act. 2015;12(1).

da Silva IC, van Hees VT, Ramires VV, Knuth AG, Bielemann RM, Ekelund U, et al. Physical activity levels in three Brazilian birth cohorts as assessed with raw triaxial wrist accelerometry. Int J Epidemiol. 2014;43(6):1959–68.

Knuth AG, Assunção MCF, Gonçalves H, Menezes AMB, Santos IS, Barros AJD, et al. Descrição metodológica do uso de acelerometria para mensurar a prática de atividade física nas coortes de nascimentos de Pelotas, Rio Grande do Sul, Brasil, 1993 e 2004. Cad Saúde Pública. 2013;29(3):557–65.

Herrmann SD, Barreira TV, Kang M, Ainsworth BE. Impact of accelerometer wear time on physical activity data: a NHANES semisimulation data approach. Br J Sports Med. 2014;48(3):278–82.

Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44:S68–76.

Lee PH, Macfarlane DJ, Lam TH. Factors associated with participant compliance in studies using accelerometers. Gait Posture. 2013;38(4):912–7.

Sirard JR, Slater ME. Compliance with wearing physical activity accelerometers in high school students. J Phys Act Health. 2009;6 Suppl 1:S148-55.

Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393–b2393.

Catellier DJ, Hannan PJ, Murray DM, Addy CL, Conway TL, Yang S, et al. Imputation of missing data when measuring physical activity by accelerometry: Med Sci Sports Exerc. 2005;37(Supplement):S555–62.

Gonçalves H, Wehrmeister FC, Assunção MCF, Tovo-Rodrigues L, Oliveira IO de, Murray J, et al. Cohort Profile Update: The 1993 Pelotas (Brazil) Birth Cohort follow-up at 22 years. Int J Epidemiol. 2018;47(5):1389–1390e.

Santos IS, Barros AJ, Matijasevich A, Zanini R, Cesar MAC, Camargo-Figuera FA, et al. Cohort Profile Update: 2004 Pelotas (Brazil) Birth Cohort Study. Body composition, mental health and genetic assessment at the 6 years follow-up. Int J Epidemiol. 2014;43(5):1437–1437f.

van Hees VT, Gorzelniak L, Dean León EC, Eder M, Pias M, Taherian S, et al. Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS ONE. 2013;8(4):e61691.

Sievänen H, Kujala UM. Accelerometry-Simple, but challenging. Scand J Med Sci Sports. 2017;27(6):574–8.

Corder K, Brage S, Ekelund U. Accelerometers and pedometers: methodology and clinical application: Curr Opin Clin Nutr Metab Care. 2007;10(5):597–603.

Metzger JS, Catellier DJ, Evenson KR, Treuth MS, Rosamond WD, Siega-Riz AM. Patterns of Objectively Measured Physical Activity in the United States: Med Sci Sports Exerc. 2008;40(4):630–8.

Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, Mcdowell M. Physical Activity in the United States Measured by Accelerometer: Med Sci Sports Exerc. 2008;40(1):181–8.

Downloads

Publicado

2021-07-12

Como Citar

1.
Martins RC, Silva BGC da, Blumenberg C, Ricardo LI, Silva SG da, Ribeiro JP, Matijasevich A, Menezes AMB, Gonçalves H, Wehrmeister FC, Santos I dos, Crochemore-Silva I, Barros AJ. Multiple imputation to deal with missing objectively-measured physical activity data: findings from two cohorts. Rev. Bras. Ativ. Fís. Saúde [Internet]. 12º de julho de 2021 [citado 19º de janeiro de 2022];26:1-8. Disponível em: https://www.rbafs.org.br/RBAFS/article/view/14570

Edição

Seção

Artigos Originais